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Abstract. The Wess–Zumino model is analysed in the framework of the causal approach of Epstein–Glaser.
The condition of invariance with respect to supersymmetry transformations is similar to gauge invariance
in the Zürich formulation. We prove that this invariance condition can be implemented in all orders of
perturbation theory, i.e. the anomalies are absent in all orders. This result is of a purely algebraic nature.
We work consistently in the quantum framework based on the Bogoliubov axioms of perturbation theory,
so no Grassmann variables are necessary.

1 Introduction

The causal approach to renormalization theory of Epstein
and Glaser [8,9] seems to be the most convenient way
to understand renormalization theory at the fundamental
level. It is also extremely useful for purely computational
reasons. In this paper we will prove that supersymmetric
theories can be also studied in a completely rigorous way
in this framework. We will analyse the simplest supersym-
metric model, namely theWess–Zumino model [22,15]. We
do not use in this paper the superfield formulation [18,21,
20]. We prefer to formulate this model working directly in
the quantum framework: we consider in the Fock space of
the model (generated by a scalar, a pseudo-scalar and a
Majorana quantum free field of the same positive mass)
and construct the chronological products verifying the Bo-
goliubov axioms. We can define in this Fock space the su-
persymmetric current and the supercharge; they are only
the linear contributions of the usual expressions appearing
in the literature. Then we impose the condition of super-
symmetry invariance at the quantum level in close analogy
to the condition of gauge invariance adopted by the Zürich
group for gauge theories [6,7]; the physical meaning of this
condition is the invariance of the S-matrix with respect to
supersymmetric transformations in the adiabatic limit. In
the next section we give the essential points concerning
the perturbation theory in the sense of Bogoliubov and
Epstein–Glaser; for more details see [12] and the litera-
ture cited there. In Sect. 3 we define the Wess–Zumino
model in this framework and in Sect. 4 we prove that su-
persymmetry invariance can be implemented to all orders
of perturbation theory by the purely algebraic procedure
of distribution splitting. We mention that this problem
has been studied in the framwork of the quantum Noether
method (closely related to the causal approach) in [14] for
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the case of zero mass; our approach has the virtue of be-
ing quite elementary and using only the basic facts con-
cerning the Epstein–Glaser approach to renormalization
theory. We add a few comments about the conservation of
the supersymmetric current at the end of this paper. The
absence of anomalies in all orders has been proved using
the usual BRST approach in [13,3,2].

2 Perturbation theory in the causal approach

2.1 Bogoliubov axioms

Let us recall briefly the main ideas of the Epstein–Glaser–
Scharf approach. According to Bogoliubov and Shirkov,
the S-matrix is constructed inductively order by order as
a formal series of operator-valued distributions:

S(g) = 1 +
∞∑

n=1

in

n!

∫
R4n

dx1 · · ·dxn

×T (x1, · · · , xn)g(x1) · · · g(xn), (2.1.1)

where g(x) is a tempered test function in the Minkowski
space R

4 that switches the interaction and T (X) ≡ T (x1,
· · · , xn) are operator-valued distributions acting in the
Hilbert spaceH generated by some collection of free fields.
These operator-valued distributions, which are called
chronological products should verify some properties which
can be argued starting from Bogoliubov axioms. We give
here the set of axioms imposed on the chronological prod-
ucts following [9].

(1) Domain: There is a common dense domain of defini-
tion D0 ∈ F for all chronological products.

(2) Symmetry:

T (xπ(1), · · ·xπ(n)) = T (x1, · · ·xn), ∀π ∈ Pn.
(2.1.2)
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(3) Poincaré invariance: There exists in the Fock space of
the model an unitary representation (a,A) 	→ Ua,A of
the group ∈ SL(2,C) (the universal covering group of
the proper orthochronous Poincaré group P↑

+; see [19]
for notation) such that

Ua,AT (x1, · · · , xn)U−1
a,A

= T (δ(A) · x1 + a, · · · , δ(A) · xn + a),
∀A ∈ SL(2,C),∀a ∈ R

4, (2.1.3)

where SL(2,C) � A 	→ δ(A) ∈ P↑
+ is the covering

map. In particular, translation invariance is essential
for implementing the Epstein–Glaser scheme of renor-
malization.
Sometimes it is possible to supplement this axiom by
invariance properties with respect to space-time inver-
sions, charge conjugation or invariance with respect to
some global group of transformations (continuous or
discrete). In this paper we will impose the invariance
with respect to supersymmetry transformations.

(4) Causality: We use the standard notations: V ± ≡ {x ∈
R

4| x2 > 0, sign(x0) = ±} for the upper (lower) light-
cone and V ± for their closures. If X ≡ {x1, · · · , xm} ∈
R

4m and Y ≡ {y1, · · · , yn} ∈ R
4m are such that xi −

yj �∈ V −, ∀i = 1, . . . ,m, j = 1, . . . , n, we use the no-
tationX ≥ Y. If xi−yj �∈ V +∪V −, ∀i = 1, . . . ,m, j =
1, . . . , n, we use the notationsX ∼ Y. Then the causal-
ity axiom can be written as follows:

T (X1X2) = T (X1)T (X2), ∀X1 ≥ X2. (2.1.4)

(5) Unitarity: We define the expressions

(−1)|X|T̄ (X) (2.1.5)

≡
|X|∑
r=1

(−1)r
∑

X1,···,Xr∈Part(X)

T (X1) · · ·T (Xr).

One calls the operator-valued distributions ¯T (X) anti-
chronological products. Then the unitarity axiom is

T̄ (X) = T (X)∗, ∀X. (2.1.6)

2.2 Epstein–Glaser induction

In this subsection we summarize the steps of the inductive
construction of Epstein and Glaser [8]. The main point
is a careful formulation of the induction hypothesis. So,
we suppose that we have the interaction Lagrangian T (x)
given by a sum of Wick monomials acting in a certain
Fock space. We make the simplifying assumption (valid for
the Wess–Zumino model) that no derivative of the fields
appear in the Wick monomials composing T (x). Moreover,
we require the following properties:

Ua,AT (x)U−1
a,A = T (δ(A)·x+a), ∀A ∈ SL(2,C), (2.2.1)

[T (x), T (y)] = 0, ∀x, y ∈ R
4 s.t. x ∼ y, (2.2.2)

and
T (x)∗ = T (x). (2.2.3)

Usually, these requirements are supplemented by co-
variance with respect to some discrete symmetries like
space-time inversions, charge conjugations or global in-
variance with respect to some Lie group of symmetry. In
this paper we will add supersymmetry invariance (see the
next section).

Let us define the degree of a Wick monomial deg(W )
by assigning to every integer spin field factor and every
derivative the value 1, for every half-integer spin field fac-
tor the value 3/2 and summing over all factors. We con-
sider the interaction Lagrangian to have the canonical di-
mension ≤ 4.

We suppose that we have constructed the chronological
products T (X), |X| ≤ n−1 having the properties (2.1.2)–
(2.1.4) and (2.1.6). We add to the induction hypothesis the
following Wick expansion property:

T (X) =
∑

i

ti(X)Wi(X), |X| ≤ n− 1, (2.2.4)

where Wi(X) are the basis of linearly independent Wick
monomials without derivatives on the fields and ti(X) are
numerical distributions; they are called renormalized
Feynman amplitudes and are Poincaré covariant. Finally,
the following limitation is included in the induction hy-
pothesis:

ω(ti) + deg(Wi) ≤ 4, ∀i, (2.2.5)

where by ω(t) we mean the order of the singularity of the
distribution t (see [16] for the definition).

Let us note that in this case we also have

[T (X1), T (X2)] = 0, if X1 ∼ X2, |X1|+|X2| ≤ n−1.
(2.2.6)

We want to construct the distribution-valued operators
T (X), |X| = n, such that the induction hypothesis stays
true.

Here are the main steps of the induction proof.
(1) One constructs from T (X), |X| ≤ n − 1 the expres-

sions T̄ (X), |X| ≤ n− 1 according to (2.1.5).
(2) One defines for |X| = n the expressions:

A′(X) ≡
∑

X1,X2∈Part(X)
X2 
=∅,xn∈X1

(−1)|X2|T (X1)T̄ (X2), (2.2.7)

R′(X) ≡
∑

X1,X2∈Part(X)
X2 
=∅,xn∈X1

(−1)|X2|T̄ (X2)T (X1), (2.2.8)

and
D(X) ≡ A′(X)−R′(X). (2.2.9)

Then one can prove that we have the causal support
property:

supp(D(X)) ⊂ Γ+(xn) ∪ Γ−(xn), (2.2.10)

where we use standard notation:

Γ±(xn) ≡ {(x1, . . . , xn) ∈ (R4)n|xi − xn ∈ V ±,
∀i = 1, . . . , n− 1}. (2.2.11)
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(3) The distribution D(X) can be written as a sum

D(X) =
∑

i

di(X)Wi(X), (2.2.12)

where di(X) are numerical distributions with causal
support, i.e.,

supp(di(X)) ⊂ Γ+(xn) ∪ Γ−(xn), (2.2.13)

and they are Poincaré covariant. Finally, the following
limitations are valid:

ω(di) + deg(Wi) ≤ 4, ∀i. (2.2.14)

Let us note that in theories with derivatives it is much
more difficult to extract the properties of the numeri-
cal distributions di from the corresponding properties
of the operatorial distribution D(X): one has a sup-
plementary induction hypothesis concerning the Wick
submonomials [8,5].

(4) Now we have the following result from [7,16]: Let d be
a SL(2,C)-covariant distribution with causal support.
Then, there exists a causal splitting

d = a− r, supp(a) ⊂ Γ+(xn), supp(r) ⊂ Γ−(xn),
(2.2.15)

which is also SL(2,C)-covariant and such that

ω(a) ≤ ω(d), ω(r) ≤ ω(d). (2.2.16)

So, there exists a SL(2,C)-covariant causal splitting:

D(X) = A(X)−R(X), |X| = n, (2.2.17)

with supp(A(X)) ⊂ Γ+(xn) and supp(R(X)) ⊂ Γ−
(xn).
For that reason, the expressions A(X) and R(X) are
called advanced (respectively retarded) products.

(5) One can prove that the following relation is true:

D(X)∗ = (−1)n−1D(X), |X| = n. (2.2.18)

As a consequence, the causal splitting obtained above
can be chosen such that

A(X)∗ = (−1)n−1A(X). (2.2.19)

This can be done by the redefinition

A(X)→ 1
2

[
A(X) + (−1)n−1A(X)∗

]
, (2.2.20)

which does not affect the support property.
(6) Let us define

T ′(X) ≡ A(X)−A′(X) = R(X)−R′(X). (2.2.21)

Then these expressions satisfy the SL(2,C)-covari-
ance, causality and unitarity conditions (2.1.3),
(2.1.4), (2.1.6) and the Wick expansion property. If
we substitute

T (x1, · · · , xn)→ 1
n!

∑
π

T ′(xπ(1), · · · , xπ(n)),

(2.2.22)
where the sum runs over all permutations of the num-
bers {1, . . . , n}, then we also have the symmetry ax-
iom (2.1.2).

The solution of the renormalization problem is not
unique. If all chronological products up to order n− 1 are
given, then the non-uniqueness in order n is given by the
possibility of adding to the distributions T (X), |X| = n
some finite renormalizations (quasi-local operators in the
terminology of [1]) N(X).

We mention in closing this section that one can con-
struct more general chronological producs [17,5], i.e., if
Ai(x), i = 1, . . . , n, are some Wick polynomials, then one
can give a natural system of axioms for the chronological
products T (A1(x1), . . . , An(xn)). It is obvious how to gen-
eralise the previous axioms to this case. We only mention
that the symmetry axiom must take into account the ex-
istence of Fermi fields: if the Wick monomial Ai(x) has fi
Fermi fields, then the commutation of Ai(xi) with Aj(xj)
in the expression T (A1(x1), . . . , An(xn)) produces a sign
(−1)fifj .

The connection with the chronological product defined
above is given by T (x1, · · · , xn) ≡ T (T (x1), . . . , T (xn)).

3 Wess–Zumino model

3.1 The definition of the model

In this subsection we define the Wess–Zumino model in
the framework of the Bogoliubov axioms presented above.
We consider the Hilbert space H endowed with the scalar
product 〈·, ·〉 and generated by applying to the vacuum Ω
the following free fields: the scalar field A(x), the pseudo-
scalar field B(x) and the Majorana field ψ(x). These fields
are assumed to have the same mass m > 0.

To describe the Majorana field we need Dirac matrices
γµ, µ = 0, . . . , 3 for which we prefer the chiral represen-
tation:

γ0 =
(
0 1
1 0

)
, γi =

(
0 −σi

σi 0

)
, i = 1, 2, 3;

(3.1.1)
here σi, i = 1, 2, 3 are the Pauli matrices. This is a repre-
sentations in which the matrix γ5 ≡ iγ0γ1γ2γ3 is diagonal:

γ5 =
(
1 0
0 −1

)
. (3.1.2)

If u ∈ C
4 is a spinor considered as a column vector

then we define ū ≡ u∗γ0 considered as a row vector.
The fields considered in our model are determined by

the following properties:

(1) Equations of motion:

(∂2 +m2)A(x) = 0, (∂2 +m2)B(x) = 0,
(iγ · ∂ −m)ψ(x) = 0. (3.1.3)

(2) Canonical (anti-) commutation relations:

[A(x), A(y)] = Dm(x− y)× 1,
[B(x), B(y)] = Dm(x− y)× 1,

{ψα(x), ψβ(y)} = (Sm(x− y)C)αβ × 1. (3.1.4)
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and all other (anti-) commutators are null; here C =
γ0γ2 is the charge conjugation matrix and Sm(x), m ≥
0 is a 4× 4 matrix given by

Sm(x) ≡ (iγ · ∂ +m)Dm(x). (3.1.5)

(3) SL(2,C)-covariance:

Ua,AA(x)U−1
a,A = A(δ(A) · x+ a),

Ua,AB(x)U−1
a,A = B(δ(A) · x+ a), (3.1.6)

Ua,Aψ(x)U−1
a,A = S(A−1)ψ(δ(A) · x+ a),

here δ : SL(2,C)→ L↑
+ is the covering map and

S(A) ≡
(
A 0
0 (A−1)∗

)
. (3.1.7)

(4) Space-time covariance:

UIsA(x)U
−1
Is

= A(Is · x),
UIsB(x)U

−1
Is

= −B(Is · x),
UIsψ(x)U

−1
Is

= iγ0ψ(Is · x). (3.1.8)

UItA(x)U
−1
It

= A(It · x),
UItB(x)U

−1
It

= B(It · x),
UItψ(x)U

−1
It

= C−1γ5ψ(It · x). (3.1.9)

The space-time inversion is UIst ≡ UIsUIt .
(5) Hermitian conjugation properties:

Aaµ(x)∗ = Aaµ(x), B(x)∗ = B(x), ψ(x)c = ψ(x),
(3.1.10)

where ∗ is the conjugation with respect to the scalar
product 〈·, ·〉 and the definition of the charge conju-
gate of the spinor u ∈ C

4 is

uc ≡ CūT . (3.1.11)

(6) Charge conjugation invariance:

UCA(x)U−1
C = A(x), UCB(x)U−1

C = B(x),

UCψ(x)U−1
C = C ¯ψ(x)

T
= ψ(x). (3.1.12)

(7) Moreover, we suppose that these operators are leaving
the vacuum invariant:

Ua,AΩ = Ω, UIsΩ = Ω, UItΩ = Ω, UCΩ = Ω.
(3.1.13)

Let us make a remark. One can prove that the operators
Ua,A, UIs and UIt are realizing a projective representa-
tion of the Poincaré group; i.e., they have suitable com-
mutation properties. Also the charge conjugation operator
commutes with these operators. As is known, there is some
freedom in choosing some phases in the definitions of the
spatial and temporal inversions; we have made the conve-
nient choice which ensures this commutativity property.

In this Fock space we can define the spinorial operator
Jµ

α(x) ≡ Jµ
α(x)

4
α=1 called the supercurrent according to

the formula

Jµ ≡ : ∂νAγ
νγµψ : +i : ∂νBγ5γ

νγµψ : +im : Aγµψ :
+i : Bγ5γµψ : (3.1.14)

where the interpretation of this operator as a column vec-
tor with four components is obvious. Then we have by
direct computation, using the equations of motion, the
following conservation law:

∂µJ
µ = 0. (3.1.15)

Moreover, the supercurrent, considered as a spinor, is
charge conjugation invariant:

(Jµ)c = Jµ. (3.1.16)

One can define formally the supercharges as a four-
component operator according to

Qα =
∫

R3
d3xJ0

α(x). (3.1.17)

To avoid problems connected with the existence of the
integral, it is better to work in momentum space. One has
the standard expressions of the free fields considered in
the model:

A(x) ≡ 1
(2π)3/2

∫
X+

m

dα+
m(p)

[
e−ip·xa(p) + eip·xa∗(p)

]
,

(3.1.18)

B(x) ≡ 1
(2π)3/2

∫
X+

m

dα+
m(p)

[
e−ip·xb(p) + eip·xb∗(p)

]
,

(3.1.19)
and

ψ(x) ≡ 1
(2π)3/2

∫
X+

m

dα+
m(p) (3.1.20)

×
2∑

s=1

[
e−ip·xus(p)ds(p) + eip·xuc

s(p)d
∗
s(p)

]
,

where us(p) are two independent solutions of positive en-
ergy of the free Dirac equation properly normalized. Here
X+

m is the upper hyperboloid of mass m and α+
m(p) is the

Lorentz invariant measure defined on this Borel set. One
can see that the formal integration of the formula (3.1.17)
gives

Q ≡
2∑

s=1

∫
X+

m

dα+
m(p)

×{−i[a(p)uc
s(p)d

∗
s(p)− a∗(p)us(p)d(p)]

+γ5[b(p)uc
s(p)d

∗
s(p)− b∗(p)us(p)ds(p)]}, (3.1.21)

which is a perfectly well-defined expression acting in the
Fock space and it will be taken as a definition. It is elemen-
tary to obtain the following (anti-) commutation relations:

[Q, a(p)] = −i
∑

s

us(p)ds(p),
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[Q, a∗(p)] = −i
∑

s

uc
s(p)d

∗
s(p),

[Q, b(p)] = γ5
∑

s

us(p)ds(p),

[Q, a∗(p)] = γ5
∑

s

uc
s(p)d

∗
s(p),

{Q, d∗
s(p)} = i[a∗(p) + iγ5b∗(p)]us(p),

{Q, ds(p)} = −i[a(p) + iγ5b(p)]us(p). (3.1.22)

and
Qc = Q, (3.1.23)

Ua,AQ = QUa,A. (3.1.24)

We will need the relations (3.1.22) in the coordinate
space:

[Q,A(x)] = −iψ(x), [Q,B(x)] = γ5ψ(x),
{Qα, ψβ(x)} = −∂µA(x)(γµC)αβ − i∂µB(x)(γ5γµC)αβ

− imA(x)Cαβ +mB(x)(γ5C)αβ . (3.1.25)

We also can prove that the supersymmetry algebra is
verified: first we have

Ua,AQαU
−1
a,A = S(A)αβQβ , (3.1.26)

where A → S(A) is the representation (0, 1/2) ⊕ (1/2, 0)
of the group SL(2,C) corresponding to the Majorana rep-
resentation of the Dirac matrices. Next

{Qα, Qβ} = −2γµ
αβPµ, (3.1.27)

where Pµ are the translation generators.
As we have said in the preceding section, the Bogoli-

ubov construction of the perturbation series starts with
the first order term T (x). We have the following result:

Proposition 3.1. Let us define the operator

T (x) ≡ c1
[
m : A(x)3 : +m : A(x)B(x)2 :

+ : ψ̄(x)ψ(x)A(x) : −i : ψ̄(x)γ5ψ(x)B(x) :
]

+c2
[
m2 : A(x)2 : +m2 : B(x)2 :

+
1
2
m : ψ̄(x)ψ(x) :

]
(3.1.28)

and the spinor operator

Tµ(x) ≡ c1
[−i : A(x)2γµψ(x) : +i : B(x)2γµψ(x) :

+ 2 : A(x)B(x)γ5γµψ(x) :] (3.1.29)
+ c2 [−im : A(x)γµψ(x) : + : B(x)γµψ(x) :]

Then the following relation is true:

[Qα, T (x)] = i
∂

∂xµ
Tµ

α (x). (3.1.30)

Moreover, the most general Wick polynomial of canon-
ical dimension≤ 4 verifying (3.1.30) is of the type (3.1.28).

As in the case of gauge theories, the relation (3.1.30)
expresses the invariance with respect to supersymmetric
transformations of the interaction Lagrangian in the for-
mal adiabatic limit. In this particular case, the weak adia-
batic limit probably exists due to the fact that the masses
of the model are strictly positive. Moreover, the following
relations are verified:

(1) SL(2,C)-covariance: for any A ∈ SL(2,C) we have

Ua,AT (x)U−1
a,A = T (δ(A) · x+ a), (3.1.31)

Ua,AT
µ(x)U−1

a,A = δ(A−1)µρT
ρ(δ(A) · x+ a).

(2) Causality:

[T (x), T (y)] = 0, [Tµ(x), T ρ(y)] = 0, (3.1.32)
[Tµ(x), T (y)] = 0, ∀x, y ∈ R

4 s.t. x ∼ y.

(3) Unitarity: suppose that c1, c2 ∈ R; then

T (x)∗ = T (x), Tµ(x)c = Tµ(x). (3.1.33)

Let us notice that there are no derivatives in the ex-
pression of the interaction Lagrangian (3.1.28), so we can
apply the procedure outlined in the preceding section.

3.2 Second order chronological product

We consider a perturbation theory in the sense of Bogoli-
ubov taking as the interaction Lagrangian the expression
(3.1.28) with c1 = 1, c2 = 0.

First, we define some distributions with causal support
which will be needed in the next proposition:

Dm,k(x) ≡ [D(+)
m (x)]k + (−1)k−1[D(−)

m (x)]k, ∀k ∈ N
∗.

(3.2.1)
Next, we consider a canonical causal splitting

Dm,k(x) = Dadv
m,k(x)−Dret

m,k(x), ∀k ∈ N
∗,

verifying Lorentz covariance and preserving the order of
singularity. By definition, this canonical causal splitting
is obtained using the central decomposition formula of
[16]. This is possible because all masses are positive. The
causal decomposition of Dm,1(x) = Dm(x) induces a sim-
ilar splitting for the distribution

Sm(x) = Sadv
m (x)− Sret

m (x).

We will denote the corresponding retarded, advanced and
Feynman distributions byDF

m,k(x) and S
F
m(x) respectively.

Then we have the following.

Proposition 3.2. The generic form of the second order
chronological product is

T (x, y) = T c(x, y) + δ(x− y)N(x), (3.2.2)
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where

T c
2 (x, y) ≡: T (x)T (y) : +6m2DF

m,3(x− y)1
−4[(∂2 −m2)DF

m,2(x− y)] : A(x)A(y) :
−4[(∂2 −m2)DF

m,2(x− y)] : B(x)B(y) :
+4i : ψ(x)[γ · ∂DF

m(x− y)]ψ(y) :
+9m2DF

m(x− y) : A(x)2A(y)2 :
+m2DF

m(x− y) : B(x)2B(y)2 :
+4m2DF

m(x− y) : A(x)B(x)A(y)B(y) :
+4 : ψ(x)SF

m(x− y)ψ(y)A(x)A(y) :
−4 : ψ(x)γ5SF

m(x− y)γ5ψ(y)B(x)B(y) :
−3m2DF

m(x− y)[: A(x)2B(y)2 : +(x↔ y)]

+3mDF
m(x− y)[: A(x)2ψ(y)ψ(y) : +(x↔ y)]

+mDF
m(x− y)[: B(x)2ψ(y)ψ(y) : +(x↔ y)]

−2imDF
m(x− y)[: A(x)B(x)ψ(y)γ5ψ(y) :

+(x↔ y)]

−4i[: ψ(x)SF
m(x− y)γ5ψ(y)A(x)B(y) :

+(x↔ y)] (3.2.3)

and N(x) is a finite normalization.
The proof consists in the explicit computation of the

commutator D2 like in [10]. The contribution T c(x, y) cor-
respond to the canonical causal splitting of the numerical
distributions. It was noticed from the very beginning [22,
15] that the various distributions appearing in the preced-
ing formula have interesting properties: for instance the
distribution appearing as the coefficients of : A(x)A(y) :,
: B(x)B(y) :, : ψ̄(x)ψ(y) : and 1 are obtained from DF

m,2

and DF
m,3 by simple operations. These properties can be

preserved by the process of distribution splitting. More-
over, the process of distribution splitting is non-trivial
only for Dm,k(x), k = 2, 3. This corresponds to the as-
sertion that one needs only two renormalization constants
for the Wess–Zumino model; see [22,15].

Now we have the following.

Theorem 3.3. In the conditions of the preceding propo-
sition, the second order chronological product T (x, y) can
be chosen such that it verifies

[Q,T (x, y)] = i
∂

∂xµ
Tµ

1 (x, y) + i
∂

∂yµ
Tµ

2 (x, y) (3.2.4)

for some associated chronological products Tµ
i (x, y), i =

1, 2 if one takes in (3.2.2):

N(x) ≡ i : A(x)4 : +i : B(x)4 : +2i : A(x)2B(x)2 : .
(3.2.5)

Proof. We follow the model of [11] and compute the com-
mutators:

Dµ
1 (x, y) ≡ [Tµ

1 (x), T1(y)], Dµ
2 (x, y) = D

µ
1 (y, x).

(3.2.6)
By direct computation we have

[Tµ
1 (x), T1(y)] = −2i : A(x)2γµSm(x− y)ψ(y)A(y) :

−2 : A(x)2γµSm(x− y)γ5ψ(y)B(y) :
+2i : B(x)2γµSm(x− y)γ5ψ(y)B(y) :
+2 : B(x)2γµSm(x− y)ψ(y)A(y) :
+4 : A(x)B(x)γ5γµSm(x− y)ψ(y)A(y) : (3.2.7)
−4i : A(x)B(x)γ5γµSm(x− y)ψ(y)B(y) : + · · · ,

where the expressions · · · cannot produce anomalies.
We perform the canonical causal splitting of the ex-

pression (∂/∂xµ)Dµ
1 (x, y) and obtain the usual delta-

distribution anomaly:

A1(x, y) ≡ 2δ(x− y)
×[−i : A(x)3ψ(x) : + : B(x)3γ5ψ(x) :
+ : A(x)2B(x)2γ5ψ(x) :
−i : A(x)B(x)2ψ(x) :], (3.2.8)

and a similar contribution follows from the other commu-
tator. But one easily proves that

A1(x, y) =
1
2
[Q, : A(x)4 : + : B(x)4 : +2 : A(x)2B(x)2 :],

(3.2.9)
so the “anomalies” can be eliminated by a proper choice
of the finite renormalization N(x).

We remark that, quite similarly to the case of Yang–
Mills theories, we have obtained the second order contri-
bution of the usual Wess–Zumino Lagrangian from the for-
mulation without the supplementary fields [22]. However,
in this case, the anomalies can be completely eliminated
by a proper choice of the finite renormalization. Moreover,
the arbitrariness of T (x, y) is of the form δ(x−y)×(3.1.28)
if one requires that the canonical dimension does not ex-
ceed 4. This is again consistent with the assertion from
the traditional approaches to renormalization theory. In
this model, at least up to order 2, one needs to renormal-
ize only two constants: the mass and the overall coupling
constant.

4 Ward identities and anomalies

4.1 The main theorem

We consider the Wess–Zumino model as defined by the
Lagrangian (3.1.28) and show that we can implement su-
persymmetry invariance in all orders of perturbation the-
ory.

Theorem 4.1. One can construct the chronological prod-
ucts T (X) such that, beside Bogoliubov axioms, the fol-
lowing relation is valid:

[Q,T (X)] = i
n∑

l=1

∂

∂xµ
l

Tµ
l (X), ∀|X|, (4.1.1)

where Tµ
l (X) are some auxiliary chronological products

which can be chosen such that

Tµ
l (X)c = Tµ

l (X), ∀|X|. (4.1.2)
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Proof. The main trick is to formulate carefully the induc-
tion hypothesis. We suppose that we have constructed the
chronological products T (x1, · · · , xp), p = 1, . . . , n−1 hav-
ing the following properties: (2.1.2)–(2.1.4) and (2.1.6) for
|X| ≤ n− 1. We also suppose that we have a more precise
form of the Wick expansion property:

T (X) =
∑

|I|=|J|
:
∏
i∈I

ψ̄αi(xi)tI,J,K,P (X)αI ;βJ

∏
j∈J

ψβi
(xj)

×
∏
k∈K

A(xk)
∏
p∈P

B(xp) : (4.1.3)

where
(a) the sum runs over all distinct triplets I, J,K, P ⊂

{1, . . . , n− 1};
(b) we have denoted αI ≡ {αi}i∈I and βJ ≡ {βj}j∈J ;
(c) the expressions tI,J,K,P (X) are numerical distribu-

tions (renormalized Feynman amplitudes); more pre-
cisely, they take values in the matrix space MC(4,
4)⊗|I|;

(d) they are SL(2,C)-covariant such that we have (2.1.3);
(e) we can suppose convenient (anti-) symmetry proper-

ties of the numerical distributions without losing gen-
erality;

(f) we have the limitation

ω(tI,J,K,P ) ≤ 4− 3|I| − |K| − |L|. (4.1.4)

We note that in this case we also have (2.2.6) for |X1|+
|X2| ≤ n− 1.
We also suppose that we have constructed the Wick

polynomials Tµ
l (X), |X ≤ n− 1 such that we have prop-

erties analogous to (2.1.2), (2.1.4), and (4.1.3). We use the
convention

T (∅) ≡ 1, Tµ
l (∅) ≡ 0, Tµ

l (X) ≡ 0, for l �∈ X.
(4.1.5)

Then the induction hypothesis is supplemented as fol-
lows.
(1) Symmetry:

Tµ
π−1(l)(xπ(1), · · ·xπ(p)) = T

µ
l (x1, · · ·xp), ∀π ∈ Pp,

(4.1.6)
for p = 1, . . . , n− 1;

(2) Covariance with respect to SL(2,C):

Ua,AT
µ
l (x1, · · · , xp)U−1

a,A (4.1.7)

= δ(A−1)µρT
ρ
l (δ(A) · x1 + a, · · · , δ(A) · xp + a),

p = 1, . . . , n− 1;
(3) Charge conjugation invariance:

UCT
µ
l (X)U−1

C = Tµ
l (X), |X| ≤ n− 1⇐⇒

Tµ
l (X)c = Tµ

l (X), |X| ≤ n− 1. (4.1.8)

(4) Causality

Tµ
l (X1X2) = T

µ
l (X1)T (X2) + T (X1)T

µ
l (X2)

∀X1 ≥ X2,

|X1|+ |X2| ≤ n− 1. (4.1.9)

(5) Wick expansion property:

Tµ
l (X)ε =

∑
|J|=|I|+1

:
∏
i∈I

ψ̄αi
(xi)t

µ
l;I,J,K,P (X)εαI ;βJ

×
∏
j∈J

ψβi(xj)
∏
k∈K

A(xk)

×
∏
p∈P

B(xp) : (4.1.10)

where the sum runs over all distinct triplets I, J,K,
P ⊂ {1, . . . , n− 1} verifying |J | = |I|+ 1; the expres-
sions tµl;I,J,K,P are numerical distributions taking val-
ues in the matrix space MC(4, 4)⊗|J|, they are SL(2,
C)-covariant and have convenient (anti-) symmetry
properties. Moreover, we make the inductive hypoth-
esis:

ω(tµl;I,J,K,P ) ≤ 3− 3|I| − |K| − |L|. (4.1.11)

We note that in this case we also have

[Tµ1
l1

(X1), T
µ2
l2

(X2)] = 0, [Tµ
l (X1), T (X2)] = 0,

if X1 ∼ X2, (4.1.12)

for |X1|+ |X2| ≤ n− 1.
(6) Supersymmetry invariance: we require that we have

(4.1.1) for |X| ≤ n− 1.
(7) In the case J = lJ ′ the distribution tµl;I,J,K,P (X) is

“proportional” to γµ i.e. we have

tµl;I,J,K,P (X) = tl;I,J,K,P (X)⊗ γµ. (4.1.13)

The corresponding Feynman graphs are 1-particle re-
ducible.

Let us note that, in the formulation of [17,5], we have

T (x1, · · · , xn) ≡ T (T (x1), . . . , T (xn)), (4.1.14)
Tµ

l (x1, · · · , xn) ≡ T (T (x1), . . . , Tµ(xl), . . . , T (xn)).

We observe that the induction hypothesis is valid for
|X| = 1 according to the preceding section. We suppose
that it is true for |X| ≤ n− 1 and prove it for |X| = n.

Now we can proceed in strict analogy with Sect. 2.2.
The proof of the following items below goes in strict anal-
ogy to the proof of the similar statements from the pre-
vious subsection and can easily be provided with minimal
modifications.

One constructs from T (X), Tµ
l (X), |X| ≤ n − 1 the

expressions T̄ (X), |X| ≤ n − 1 according to (2.1.5) and
similarly T̄µ

l (X), |X| ≤ n− 1, according to

(−1)|X|T̄µ
l (X) ≡

|X|∑
r=1

(−1)r
∑

X1,···,Xr∈Part(X)

× [Tµ
l (X1)T (X2) · · ·T (Xr) + · · ·+ T (X1)

· · ·T (Xr−1)T
µ
l (Xr)]; (4.1.15)

we use in an essential way the convention (4.1.5). Next,
we define in analogy to (2.2.7) and (2.2.8) the following
expressions for |X| = n:
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A′µ
l (X) ≡

∑
X1,X2∈Part(X)
X2 
=∅,xn∈X1

[
Tµ

l (X1)T̄ (X2) + T (X1)T̄
µ
l (X2)

]
,

(4.1.16)
R′µ

l (X) ≡
∑

X1,X2∈Part(X)
X2 
=∅,xn∈X1

[
T̄µ

l (X1)T (X2) + T̄ (X1)T
µ
l (X2)

]
.

(4.1.17)
Next, we define in analogy to (2.2.9) the expression

Dµ
n(X) ≡ A′µ

l (X)−R′µ
l (X), (4.1.18)

and prove that it has causal support, i.e., supp(Dµ
n(x1, . . . ,

xn−1;xn)) ⊂ Γ+(xn) ∪ Γ−(xn). The proof is completely
analogous to the standard proof from [8].

From the Wick expansion properties (4.1.3) and
(4.1.10) we also have, with the same conventions,

D(X) =
∑

|I|=|J|
:
∏
i∈I

ψ̄αi(xi)dI,J,K,P (X)αI ;βJ

×
∏
j∈J

ψβi
(xj)

∏
k∈K

A(xk)
∏
p∈P

B(xp) : (4.1.19)

Dµ
l (X)ε =

∑
|J|=|I|+1

:
∏
i∈I

ψ̄αi
(xi)d

µ
l;I,J,K,P (X)εαI ;βJ

×
∏
j∈J

ψβi
(xj)

∏
k∈K

A(xk)
∏
p∈P

B(xp) : (4.1.20)

where d...
...(X) are numerical distributions verifying the fol-

lowing properties:

(a) SL(2,C)-covariance;
(b) causal support, i.e, supp(d...

...(x1, . . . , xn−1;xn)) ⊂
Γ+(xn) ∪ Γ−(xn);

(c) limitation on the order of singularity:

ω(dI,J,K,P ) ≤ 4− 3|I| − |K| − |L|,
ω(dµ

l;I,J,K,P ) ≤ 3− 3|I| − |K| − |L|. (4.1.21)

The absence of a derivative in the Wick monomials
Wi(X) is again essential in establishing these relations.

As a consequence, there exists a SL(2,C)-covariant
causal splitting:

Dµ
l (X) = Aµ

l (X)−Rµ
l (X), |X| = n, (4.1.22)

with supp(Aµ
l (X)) ⊂ Γ+(xn) and supp(R

µ
l (X)) ⊂ Γ−(xn)

for all l = 1, . . . , n.
We also have from the induction hypothesis in analogy

with (2.2.18):

Dµ
l (X)c = (−1)n−1Dµ

l (X), |X| = n. (4.1.23)

Now we investigate the possible obstruction to the ex-
tension of the identity (4.1.1) for |X| = n. We first prove
by direct computation that we have

[Q,D(X)] = i
∑
l∈X

∂

∂xµ
l

Dµ
l (X), |X| = n. (4.1.24)

We substitute here the causal decompositions (2.2.17)
and (4.1.22) in the preceding relation and we get

[Q,A(X)]− i
n∑

l=1

∂

∂xµ
l

Aµ
l (X)

= [Q,R(X)]− i
n∑

l=1

∂

∂xµ
l

Rµ
l (X). (4.1.25)

Now the left hand side has support in Γ+(xn) and the
right hand side in Γ−(xn) so the common value, denoted
by P (X) should have the support in Γ+(xn) ∩ Γ−(xn) =
{x1 = · · · = xn}. This means that we have

[Q,A(X)]− i
n∑

l=1

∂

∂xµ
l

Aµ
l (X) = P (X), (4.1.26)

where P (X) has the structure

P (X) =
∑

i

[
pi(∂)δn−1(X)

]
Wi(x); (4.1.27)

here pi are polynomials in the derivatives with the maxi-
mal degree restricted by

deg(pi) + deg(Wi) ≤ 5 (4.1.28)

and

δn−1(X) ≡ δ(x1 − xn) · · · δ(xn−1 − xn). (4.1.29)

It is easy to see that the “anomaly” can be produced
only by those terms appearing in the Wick expansions
of D(X) and Dµ

l (X) for which the Wick monomials are
restricted by ω(Wi) ≤ 5. We will show in the next subsec-
tions that one can choose P (X) = 0. We will write such a
generic form of these terms from D(X) and Dµ

l (X) in the
next two subsections.

4.2 The expression of D(X)

The terms corresponding to canonical dimension ≤ 5 from
(4.1.19) are
A. ω(WK) = 1

D(1)(X) =
∑

d
(1)
i (X)A(xi), (4.2.1)

D(2)(X) =
∑

d
(2)
i (X)B(xi). (4.2.2)

B. ω(WK) = 2

D(3)(X) =
∑

d
(3)
ij (X) : A(xi)A(xj) : (4.2.3)

D(4)(X) =
∑

d
(4)
ij (X) : A(xi)B(xj) : (4.2.4)

D(5)(X) =
∑

d
(5)
ij (X) : B(xi)B(xj) : (4.2.5)
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C. ω(WK) = 3

D(6)(X) =
∑

d
(6)
ijk(X) : A(xi)A(xj)A(xk) : (4.2.6)

D(7)(X) =
∑

d
(7)
ijk(X) : A(xi)A(xj)B(xk) : (4.2.7)

D(8)(X) =
∑

d
(8)
ijk(X) : A(xi)B(xj)B(xk) : (4.2.8)

D(9)(X) =
∑

d
(9)
ijk(X) : B(xi)B(xj)B(xk) :(4.2.9)

D(10)(X) =
∑

: ψ(xi)d
(10)
ij (X)ψ(xj) : (4.2.10)

D. ω(WK) = 4

D(11)(X) =
∑

d
(11)
ijkp(X) : A(xi)A(xj)A(xk)A(xp) :

(4.2.11)
D(12)(X) =

∑
d
(12)
ijkp(X) : A(xi)A(xj)A(xk)B(xp) :

(4.2.12)
D(13)(X) =

∑
d
(13)
ijkp(X) : A(xi)A(xj)B(xk)B(xp) :

(4.2.13)
D(14)(X) =

∑
d
(14)
ijkp(X) : A(xi)B(xj)B(xk)B(xp) :

(4.2.14)
D(15)(X) =

∑
d
(15)
ijkp(X) : B(xi)B(xj)B(xk)B(xp) :

(4.2.15)
D(16)(X) =

∑
: ψ(xi)d

(16)
ijk (X)ψ(xj)A(xk) : (4.2.16)

D(17)(X) =
∑

: ψ(xi)d
(17)
ijk (X)ψ(xj)B(xk) : (4.2.17)

E. ω(WK) = 5

D(18)(X) =
∑

d
(18)
ijkpq(X)

: A(xi)A(xj)A(xk)A(xp)A(xq) : (4.2.18)

D(19)(X) =
∑

d
(19)
ijkpq(X)

: A(xi)A(xj)A(xk)A(xp)B(xq) : (4.2.19)

D(20)(X) =
∑

d
(20)
ijkpq(X)

: A(xi)A(xj)A(xk)B(xp)B(xq) : (4.2.20)

D(21)(X) =
∑

d
(21)
ijkpq(X)

: A(xi)A(xj)B(xk)B(xp)B(xq) : (4.2.21)

D(22)(X) =
∑

d
(22)
ijkpq(X)

: A(xi)B(xj)B(xk)B(xp)B(xq) : (4.2.22)

D(23)(X) =
∑

d
(23)
ijkpq(X)

: B(xi)B(xj)B(xk)B(xp)B(xq) : (4.2.23)

D(24)(X) =
∑

: ψ(xi)d
(24)
ijkp(X)ψ(xj)A(xk)A(xp) :

(4.2.24)

D(25)(X) =
∑

: ψ(xi)d
(25)
ijkp(X)ψ(xj)A(xk)B(xp) :

(4.2.25)

D(26)(X) =
∑

: ψ(xi)d
(26)
ijkp(X)ψ(xj)B(xk)B(xp) :

(4.2.26)

The term proportional to the identity operator 1 is
omitted because it does not contribute to (4.1.24). We as-
sume that d(10), d(16), d(17), d(24)–d(26) are matrix-valued
distributions; more precisely that they have values in
MC(4, 4). Moreover, it can be proved that these distri-
bution can be chosen such that they verify

C−1d
(α)
ij...(X)C = −d(α)

ji...(πij(X))T (4.2.27)

without losing generality. The other expressions d(α) are
numerical distributions. The distributions d(α), α = 1, . . . ,
26 are SL(2,C)-covariant and have causal support.

4.3 The expression of Dµ
l (X)

The terms corresponding to canonical dimension ≤ 5 from
(4.1.20) are
A. ω(WK) = 3/2

D
(1)µ
l (X) =

∑
d
(1)µ
l;i (X)ψ(xi) (4.3.1)

B. ω(WK) = 5/2

D
(2)µ
l (X) =

∑
d
(2)µ
l;ij (X) : ψ(xi)A(xj) : (4.3.2)

D
(3)µ
l (X) =

∑
d
(3)µ
l;ij (X) : ψ(xi)B(xj) : (4.3.3)

C. ω(WK) = 7/2

D
(4)µ
l (X) =

∑
d
(4)µ
l;ijk(X) : ψ(xi)A(xj)A(xk) : (4.3.4)

D
(5)µ
l (X) =

∑
d
(5)µ
l;ijk(X) : ψ(xi)A(xj)B(xk) : (4.3.5)

D
(6)µ
l (X) =

∑
d
(6)µ
l;ijk(X) : ψ(xi)B(xj)B(xk) : (4.3.6)

D. ω(WK) = 9/2

D
(7)µ
l (X) =

∑
d
(7)µ
l;ijkp(X)

: ψ(xi)A(xj)A(xk)A(xp) : (4.3.7)

D
(8)µ
l (X) =

∑
d
(8)µ
l;ijkp(X)

: ψ(xi)A(xj)A(xk)B(xp) : (4.3.8)

D
(9)µ
l (X) =

∑
d
(9)µ
l;ijkp(X)

: ψ(xi)A(xj)B(xk)B(xp) : (4.3.9)

D
(10)µ
l (X) =

∑
d
(10)µ
l;ijkp(X)

: ψ(xi)B(xj)B(xk)B(xp) : (4.3.10)

D
(11)µ
l (X) =

∑
: ψ(xi)d

(11)µ
l;ijk (X)ψ(xj)ψ(xk) :

(4.3.11)

We assume that they are matrix-valued distributions:
d
(1)µ
l;I –d(10)µl;I ∈ MC(4, 4) and d

(11)µ
l;ijk ∈ MC(4, 4)⊗2; we can

impose for these distributions the condition

C−1d
(α)
l;I (X)C = −d(α)

l;I (X)T , α = 1, . . . , 10, (4.3.12)
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and

C−1d
(11)
l;ijk(X)C = −d(11)l;jik(πij(X))T (4.3.13)

without losing generality. The distributions d(α)µ, α =
1, . . . , 11 are SL(2,C)-covariant and have causal support.

Moreover, we have from the induction hypothesis
(4.1.13) that

d
(α)
l;lI = d(α)

l;lIγ
µ, α = 1, . . . , 10, (4.3.14)

where d(α)
i;I are numerical distribution, and

d
(11)
j;ijk = d(11)j;ijk ⊗ γµ, (4.3.15)

where d(11)j;ijk is a matrix-valued distribution, more precisely
one with values in MC(4, 4).

4.4 The basic equations

The expression i[Q,D(X)] +
∑

l(∂/∂x
µ
l )D

µ
l (X) is a Wick

sum and the relevant contributions following from the pre-
ceding two subsections are
1.1 The coefficient of the monomial ψ(xi):

d
(1)
i (X) + id(2)i (X)γ5 − imd(1)i;i (X) +

∑
l

∂

∂xµ
l

d
(1)µ
l;i (X).

(4.4.1)
B. ω(WK) = 5/2
2.1 The coefficient of the monomial : ψ(xi)A(xj) :

2d(3)ij (X) + id(4)ij (X)γ5 − 2md(10)ji (X ′)

−imd(2)i;ij(X) +
∑

l

∂

∂xµ
l

d
(2)µ
l;ij (X) (4.4.2)

2.2 The coefficient of the monomial : ψ(xi)B(xj) :

d
(4)
ij (X) + 2id(5)ij (X)γ5 − 2imγ5d

(10)
ji (X ′)

−imd(3)i;ij(X) +
∑

l

∂

∂xµ
l

d
(3)µ
l;ij (X) (4.4.3)

C. ω(WK) = 7/2
3.1 The coefficient of the monomial : ψ(xi)A(xj)A(xk) :

3d(6)ijk(X) + id(7)jki(X
′)γ5 − 2md(16)jik (X ′)

−imd(4)i;ijk(X) +
∑

l

∂

∂xµ
l

d
(4)µ
l;ijk(X). (4.4.4)

3.2 The coefficient of the monomial : ψ(xi)A(xj)B(xk) :

2d(7)ijk(X) + 2id(8)jki;abc(X
′)γ5 − 2imd(16)kij (X ′)γ5 (4.4.5)

−2md(17)jik (X ′)− imd(5)i;ijk(X) +
∑

l

∂

∂xµ
l

d
(5)µ
l;ijk(X).

3.3 The coefficient of the monomial : ψ(xi)B(xj)B(xk) :

d
(8)
ijk(X) + 3id(9)ijk(X)γ5 − 2imd(17)jik (X ′)γ5 − imd(6)i;ijk(X)

+
∑

l

∂

∂xµ
l

d
(6)µ
l;ijk(X). (4.4.6)

3.4 The coefficient of the monomial : ∂µA(xj)ψ(xj) :

2iγµd
(10)
ij (X) + d(2)µi;ji (X

′). (4.4.7)

3.5 The coefficient of the monomial : ∂µB(xi)ψ(xj) :

−2γ5γµd
(10)
ij (X) + d(3)µi;ji (X

′). (4.4.8)

D. ω(WK) = 9/2
4.1 The coefficient of the monomial
: ψ(xi)A(xj)A(xk)A(xp) :

4d(11)ijkp(X) + id(12)pijk(X
′)γ5 − 2md(24)jikp(X

′)− imd(7)i;ijkp(X)

+
∑

l

∂

∂xµ
l

d
(7)µ
l;ijkp(X). (4.4.9)

4.2 The coefficient of the monomial
: ψ(xi)A(xj)A(xk)B(xp) :

3d(12)ijkp(X) + 2id(13)kijp(X
′)γ5 − 2imd(24)pijk(X

′)γ5 (4.4.10)

−2md(25)jikp(X
′)− imd(8)i;ijkp(X) +

∑
l

∂

∂xµ
l

d
(8)µ
l;ijkp(X).

4.3 The coefficient of the monomial
: ψ(xi)A(xj)B(xk)B(xp) :

2d(13)ijkp(X) + 3id(14)jikp(X
′)γ5 − 2imd(25)kij (X ′)γ5 (4.4.11)

−2md(26)jikp(X
′)− imd(9)i;ijkp(X) +

∑
l

∂

∂xµ
l

d
(9)µ
l;ijkp(X).

4.4 The coefficient of the monomial
: ψ(xi)B(xj)B(xk)B(xp) :

d
(14)
ijkp(X) + 4id(15)ijkp(X)γ5 − 2imd(26)jikp(X

′)γ5

−imd(10)i;ijkp(X) +
∑

l

∂

∂xµ
l

d
(10)µ
l;ijkp(X). (4.4.12)

4.5 The coefficient of the monomial : ψ(xi)∂µA(xj)A(xk) :

2iγµd
(16)
jik (X ′) + d(4)µj;ijk(X). (4.4.13)

4.6 The coefficient of the monomial : ψ(xi)∂µA(xj)B(xk) :

2iγµd
(17)µ
jik (X ′) + d(5)µj;ijk(X). (4.4.14)

4.7 The coefficient of the monomial : ψ(xi)A(xj)∂µB(xk) :

−2γ5γµd
(16)
kij (X ′) + d(5)µk;ijk(X). (4.4.15)
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4.8 The coefficient of the monomial : ψ(xi)∂µB(xj)B(xk) :

−γ5γµd
(17)
jik (X ′) + d(6)µj;ijk(X). (4.4.16)

4.9 The coefficient of the monomial : ψ(xi)ψ(xj)ψ(xk) :

d
(16)
ijk (X)⊗ 1+ id(17)ijk (X)⊗ γ5 − 3imd(11)k;ijk(X)

+
∑

l

∂

∂xµ
l

d
(11)µ
l;ijk (X). (4.4.17)

In these equations we mean by X ′ the corresponding
permutation of the variables X. The expression of the
anomaly P (X) is given by (4.1.27) where only the 17 Wick
monomials listed above can appear.

All anomalies pi can be eliminated purely algebraically
by redefining some of the causal splittings. First, we take
a causal splitting of all distributions

d(α) = a(α) − r(α), d(α)µ = a(α)µ − r(α)µ, (4.4.18)

verifying SL(2,C)-covariance and preserving the order of
singularity. (We make the labelling in such a way that
for α = 1, . . . , 26 and α = 1, . . . , 11 respectively we have
the distributions from the preceding two subsections.) The
expressions A(X) and Aµ

l (X) are defined according to the
relations of the type (2.2.4).

Then we notice that we can absorb all anomalies in

a
(1)
i (X), a(3)ij (X), a(4)ij (X), a(6)ijk(X), a(7)ijk(X), a(8)ijk(X),

a
(2)µ
j;ji (X), a(3)µj;ji (X), a(11)ijkp(X),

a
(12)
ijkp(X), a(13)ijkp(X), a(14)ijkp(X), a(4)µj;ijk(X), a(5)µj;ijk(X),

a
(5)µ
k;ijk(X), a(6)µj;ijk(X), a(16)ijk (X) (4.4.19)

respectively.
This means that one can make the causal splitting such

that (4.1.26) is

[Q,A(X)] = i
n∑

l=1

∂

∂xµ
l

Aµ
l (X). (4.4.20)

From the relation (4.4.20) one can obtain by Hermitian
conjugation

[Q,A(X)∗] = i
n∑

l=1

∂

∂xµ
l

Aµ
l (X)c, (4.4.21)

where use has been made of the relation (3.1.23), which
says that the supercharge is a Majorana spinor, and of the
relations (2.2.18) and (4.1.23). If one makes the substitu-
tions (2.2.20) and

Aµ
l (X)→ 1

2
[
Aµ

l (X) + (−1)n−1(A(X)µl )
c
]
, (4.4.22)

we still have a legitimate causal decomposition of the
type (2.2.17) and (4.1.22); the consistency is ensured by

(4.1.23). It follows that the causal splitting can be chosen
such that

A(X)∗ = (−1)n−1A(X), Aµ
l (X)c = (−1)n−1Aµ

l (X).
(4.4.23)

This relation is essential in establishing the unitarity
axiom in order n (see [8]).

Finally we define the chronological products as in
Sect. 2.2 and by analogy

Tµ
l (X) ≡ Aµ

l (X)−A′µ
l (X) = Rµ

l (X)−R′µ
l (X). (4.4.24)

These expressions satisfy Poincaré covariance, causal-
ity and unitarity conditions. If we make the substitution
(2.2.22) and analogously

Tµ
l (x1, · · · , xn)→ 1

n!

∑
π

Tµ
π−1(l)(xπ(1), · · · , xπ(n)),

(4.4.25)
then we also have the symmetry axioms (2.1.2) and (4.1.6).
Finally, one can prove that the rest of the induction hy-
pothesis is true in order n of the perturbation theory. Some
effort is required for (4.1.13).

The invariance of the S-matrix with respect to space-
time inversions can be obtained as in the case of quantum
electrodynamics [16].

4.5 The conservation of the supercurrent

The analysis from [14] is based on the conservation of the
supercurrent. We give below the analysis in the first order
and compare with the result of [14].

First we have the following.

Proposition 4.2. The following relation is true:

[Jµ(x), T (y)] = Dm(x− y)Aµ(x, y)

+
∂

∂xν
Dm(x− y)γνγµA(x, y)

+2m[γ · ∂, γµ]Dm,2(x− y)
+2 : ∂νA(x)γνγµSm(x− y)A(y)ψ(y) :
−2i : ∂νA(x)γνγµSm(x− y)B(y)γ5ψ(y) :
+2i : ∂νB(x)γ5γνγµSm(x− y)A(y)ψ(y) :
+2 : ∂νB(x)γ5γνγµSm(x− y)A(y)γ5ψ(y) :
+2im : A(x)γµSm(x− y)A(y)ψ(y) :
+2m : A(x)γµSm(x− y)B(y)γ5ψ(y) :
−2m : B(x)γ5γµSm(x− y)A(y)ψ(y) :
+2im : B(x)γ5γµSm(x− y)B(y)γ5ψ(y) : (4.5.1)

where

Aµ(x, y) ≡ 3im2 : γµψ(x)A(y)2 :
+im2 : γµψ(x)B(y)2 :
+2m2 : γ5γµψ(x)A(y)B(y) :

+im : γµψ(x)ψ(y)ψ(y) :

+im : γ5γµψ(x)ψ(y)γ5ψ(y) : (4.5.2)
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and

A(x, y) ≡ 3m : ψ(x)A(y)2 : +m : ψ(x)B(y)2 :

+2im : ψ(x)A(y)B(y) : +m : ψ(x)ψ(y)ψ(y) :

+m : γ5ψ(x)ψ(y)γ5ψ(y) : (4.5.3)

Following the usual procedure of constructing the
chronological products of the general type T (A1(x1), . . . ,
An(xn)) (see [17], [5]) one can find that, up to finite renor-
malizations, one can take

T (Jµ(x), T (y)) = DF
m(x− y)Aµ(x, y)

+
∂

∂xν
DF

m(x− y)γνγµA(x, y)

+2m[γ · ∂, γµ]DF
m,2(x− y)

+2 : ∂νA(x)γνγµSF
m(x− y)A(y)ψ(y) :

−2i : ∂νA(x)γνγµSF
m(x− y)B(y)γ5ψ(y) :

+2i : ∂νB(x)γ5γνγµSF
m(x− y)A(y)ψ(y) :

+2 : ∂νB(x)γ5γνγµSF
m(x− y)A(y)γ5ψ(y) :

+2im : A(x)γµSF
m(x− y)A(y)ψ(y) :

+2m : A(x)γµSF
m(x− y)B(y)γ5ψ(y) :

−2m : B(x)γ5γµSF
m(x− y)A(y)ψ(y) :

+2im : B(x)γ5γµSF
m(x− y)B(y)γ5ψ(y) : (4.5.4)

In that case one can compute the divergence with re-
spect to the variable x. The result is

∂

∂xµ
T (Jµ(x), T (y)) = −iδ(x− y)A(x, y)

+2δ(x− y)
[
: ∂νA(x)γνA(y)ψ(y) :

−i : ∂νA(x)γνB(y)γ5ψ(y) :
+i : ∂νB(x)γ5γνA(y)ψ(y) :
+ : ∂νB(x)γ5γνA(y)γ5ψ(y) :
+im : A(x)A(y)ψ(y) : +2m : A(x)γ5ψ(y) :
−m : B(x)γ5A(y)ψ(y) :

+im : B(x)γ5B(y)γ5ψ(y) :
]

= iδ(x− y) ∂
∂yµ

Tµ(y). (4.5.5)

If we make the finite renormalization

T (Jµ(x), T (y)) −→ T (Jµ(x), T (y)) + iδ(x− y)Tµ(x),
(4.5.6)

then we obtain from the preceding relation

∂

∂xµ
T (Jµ(x), T (y)) +

∂

∂yµ
T (T (x), Jµ(y)) = 0. (4.5.7)

In [14] such a relation is postulated in the general case,
i.e.,

n∑
l=1

∂

∂xµ
l

T (T (x1), . . . , Jµ(xl) . . . , T (xn)) = 0. (4.5.8)

5 Conclusions

We have proved that the essence of the improved renor-
malizability properties of supersymmetric models is due
to the fact that (4.1.24) is of a purely algebraic nature
and so the possible anomalies can be eliminated by a
redefinition of the causal splitting. We comment on the
corresponding Ward identities following from (4.1.1). If
one considers chronological products of Wick submono-
mials with a proper normalization then one can translate
(4.1.1) into equations for the renormalized Feynman am-
plitudes. One obtains that all expressions from Sect. 4.3
with d...

... → t...... are null. These are exactly the Ward iden-
tities of the Wess–Zumino model [15]. Such type of iden-
tities have been extensively studied in [4]. In particular,
they impose the behaviour of the Feynman amplitudes
described before Theorem 3.3.

A very interesting subject for further investigations is
to determine how general is the phenomenon exhibited in
this paper, that is the purely algebraic Ward identities.

A reformulation of the preceding analysis in terms of
superfields [18,21,20] would also be interesting.
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